Quiz 2 solutions

1. For the following pairs of groups (H, K), describe all non-trivial semidirect products of the form $H \ltimes_{\psi} K$ and $K \ltimes_{\psi^{\prime}} H$.
(a) $(H, K)=\left(\mathbb{Z}, \mathbb{Z}_{2}\right)$.
(b) $(H, K)=\left(\mathbb{Z}_{4}, \mathbb{Z}_{8}\right)$.

Solution. (a) There exists no non-trivial semi-direct of the form $\mathbb{Z} \ltimes_{\psi} \mathbb{Z}_{2}$ as such a semi-direct product is determined by a non-trivial homomorphism $\psi: \mathbb{Z} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{2}\right)$, which does not exist since $\operatorname{Aut}\left(\mathbb{Z}_{2}\right)$ is trivial. Now, since $\operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_{2}$, there exists only one non-trivial homomorphism $\mathbb{Z}_{2} \rightarrow \operatorname{Aut}(\mathbb{Z})$, which is the identity homomorphism $\psi: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$. Hence, $\psi(=i d)$ determines a non-trivial semi-direct product $\mathbb{Z}_{2} \ltimes_{\psi} \mathbb{Z}$. (Describe the group operation on $\mathbb{Z}_{2} \ltimes_{\psi} \mathbb{Z}$.)
(b) We know from 5.2 (vi)(b) of the Lesson Plan that any non-trivial semi-direct product of the form $\mathbb{Z}_{m} \ltimes_{\psi} \mathbb{Z}_{n}$ is determined by a (nontrivial) $k \in U_{n}$ satisfying $k^{m} \equiv 1(\bmod n)$. Since $U_{4}=\{1,3\}$ and $U_{8}=\{1,3,5,7\}$, there exists four such non-trivial semi-direct products, namely:
(i) $\mathbb{Z}_{8} \ltimes_{3} \mathbb{Z}_{4}$,
(ii) $\mathbb{Z}_{4} \ltimes_{3} \mathbb{Z}_{8}$,
(iii) $\mathbb{Z}_{4} \ltimes_{5} \mathbb{Z}_{8}$, and
(iv) $\mathbb{Z}_{4} \ltimes_{7} \mathbb{Z}_{8}$.
2. Let G be a group of order $p q$, where p and q are distinct primes with $p>q$. Then show that $G \cong \mathbb{Z}_{q} \ltimes_{\psi} \mathbb{Z}_{p}$.
Solution. By the First Sylow Theorem, G has Sylow p - subgroup P or order p, and a Sylow q-subgroup Q of order q. Furthermore, since $n_{p} \equiv 1(\bmod p)$ and $n_{p} \mid q$, it follows that that $n_{p}=1$. Thus, P is unique and by 4.4 (x) of the Lesson Plan, it follows that $P \triangleleft G$.

Now consider the action $Q \curvearrowright^{c} P$ by conjugation (see Lesson Plan 4.3.3.), which is well-defined since $P \triangleleft Q$. For a fixed $g \in Q$, the map $\varphi_{g}: P \rightarrow P, h \mapsto g h g^{-1}$ defines an automorphism of P, that is, $\varphi_{g} \in \operatorname{Aut}(P)$, for each $g \in Q$. Thus, the permutation representation

$$
\Psi_{Q \curvearrowright^{c} P}: Q \rightarrow S(P): g \stackrel{\Psi_{Q \wedge^{c} P}}{\longmapsto} \varphi_{g}
$$

of the action $Q \curvearrowright^{c} P$ defines a homomorphism from $Q \rightarrow \operatorname{Aut}(P)$. Therefore, taking $\Psi^{\prime}=\Psi_{Q \curvearrowright^{c} P}$, we see that $Q \ltimes_{\Psi^{\prime}} P$ is a well-defined a semi-direct product. Furthermore, since $P \cong \mathbb{Z}_{p}$ and $Q \cong \mathbb{Z}_{q}$, we see that $Q \ltimes_{\psi^{\prime}} P \cong \mathbb{Z}_{q} \ltimes_{\psi} \mathbb{Z}_{p}$, where $\Psi=\Psi_{\mathbb{Z}_{q} \curvearrowright \mathbb{Z}_{p}}$ is the corresponding permutation representation associated with the conjugation action $\mathbb{Z}_{q} \curvearrowright^{c} \mathbb{Z}_{p}$. (Verify this!)
Now, by the assertion in 2.3 (vi) of the Lesson Plan, we see that the internal direct product $Q P \leq G$ and by 2.2 (xiii) of the Lesson Plan, we have that $|Q P|=q p$. Hence, it follows that $G=Q P$. Finally, our assertion follows from the fact that the map $Q \ltimes_{\psi^{\prime}} P \rightarrow Q P:(q, p) \rightarrow q p$ defines an isomorphism. (Verify this!)

